
*

 ares iormal to the mind,

With Special Reference to the Law jj Dynamical Similarity.

Hugh L. Dr men.


```
    Axes Normal to the |ina,
With Special xeference to the Law of Lynsmical
                        Similarity.
```

 A Dissertation
 Wumitted to the Board of University Studies
of the Johns Hopkins University in Conformity
with the Requirements for the Legree of
Doctor of Philosophy
by
Hugh Latiwer "prycien
baitimore
June, 1919.

Contents

I Introductory
II Treoretical Considerations"Perfect झluiā" TheoryTheord of the Surfaco oi viscontinuityThe llork of KármánConsiaeration of rluid StressesDinensional rueory
III Force lieasurementsspparatusThe InumelWhe BalancesSpeed heasurementThe inodels
i.iethoàs of hieasurement
Results
Accuracy
IV Pressure Distribution Measurements
Motrod
results
Accuracy

I. Irritunuciury

One of the pressing problems of theoretical as well as practical interest in present day aerobynamios is the proper means of passing from results obtained on small models in a wind tunnel to resulis valid for the full scale body. inuch work has been done of an empirical nature on aerofoils and forms directly suited for practical use, but so far no extensive investigation has been made of air forces on a body of simple geonetrical for.. over a large range, so that the suggested lams might be testea. Ihe obiect of the present investigation was to test the validity of the law of dimensional similarity, proposed a long time ago by Iurd iayleigh!, over a wider range than has heretofore been done, using as models circular cylinders with their axes nornal to the wind. Iord Rayleigh showed that under the ascumptious vsually made the force of a cirrent of air upon a solid body may be expressed as cpsV², \boldsymbol{p} boing the density of the air, S tne area of the solid prujected on a plene normal to the wind, V the velocity of the wind, and C a dise isionless constant devenaing on a single parameter $\frac{V I}{r}$, where r is the kinomatic viscosity of the air and Δ is a linear dimension of the soliā. Certain features of the results made it advisable to mare in aadition some measurcments of tno pressure distribution. rilho tne investigation is oy no means completed, the results
are so contrar, to current views taat it is lelt auv: saule to bring them to the attention of otier vind tunnel experimenters.

Ine previous vork on vires and cylinders (azes nommal to the wind) is very scant. In fact but three investigations in any way complete heve been found; namely those of Ioppl ${ }^{2}$ at जैöttingen, those of IVorris and Mhurstonés at Last London Coliege, and those carried out at the National Prysical Laboratory of Great Britain ${ }^{5}$. The results aififer marcedly, even as to the esscntial characteristics. Irie results ootained at tne Nationa」 Physical luaboratory agree among themselves ver: well. They are shown on curve I oi the a pendix. föppl's results ar about 25 percent lower and the shape of his curve (curve II) is entirely difiereat. liorris ana aurston obtained the results hown in curve III. Eiffel ${ }^{6}$ gives rewults for two cilinders only ana no correction is sade for tre ends so a comparison car not be made. Some vori was also done at the wassachusetts Institute 0i Technology ${ }^{7}$ but hers also no currection was made for the ends. All the investigators hentioned consiaer tue ringe only fro.. $V=0$ to 5 on the fuot second system. $10-.405$ on the metric $S_{n,}$, tema). L is taken as tho aiameter ol tne eylinaer. -us the neea $O \boldsymbol{O}$ =...e more extended or- is eviajent.

The prosent mora was carriaa out chieflJ at hiદher vul-

ussd riitn velocivies from li to 3 : mijes wer hour. (r.f.Z 137 -in, $n r$). Hne range ot vulues or vias fto. 2 to 30 in foot-secona units. (.13-2.7s多 in metric units). (1'e e cJinaers rere .aade of wood vitn the exceetion of three brass ones, $I^{\prime \prime}, ~ l ~ l / z^{\prime \prime}, 4^{\prime \prime}$; ma aaditionill l" a a 4 " cylinders oi wood were also used. Tre result are expressed by plotting the coefficient U ag inst Vu as a base. is is tazen as tre aiameter of the coliuder. Doth metric and inglish systems are given on the plutis. In ewerel tho results show that the law in its raseut iorn dues not represext the fiacts.

"Perfect riluid" Theor.

1. U earliest attenitis at uneoreticul invesingution o. the flow or flutcos followeu the usuml curse of vroble s in atneartical physics. Just as in our orainary ánewics tinc concent oí a articlc uI matter devel ged, st herc ine concept of a pluid pariicle cane into bein; ana just win in our orainar, asnamice iricuion was fur the tine beine ne=lectia, so inere the furces $u \perp$ viscosity were neglected. Thus tiere arosc the ides ou a serfect fluid.. itn certain genersl chirscteristics wrich semed to apuroximate an actuaf luid as closely as ordimary dynanics aopr.xi ates r̈acis. It.e properties of this iaginur: iluia were inen stuaied watho atioally. It waw very soon iound taat the ins of such a iluid
 ith u．very lew special cases．phus，fur ex gule；tne in w about a cylinuer or sphere，as ueauced Iro．．．thio treord， is jerfectly symnetrical at Irront dald bacir；the pressures are symnetrical and there is no resultant force．Lhus trere is no resistance to notion，a result siltogetrer out oí accord witn experiment．

Theor，of the Surface of Discontinuity

Sinc theory was then moaified．It was noticed that in sone probleas，for instance that of the flow around a flat plate，the mathenatical anal．jsis gave negative uressures， a state of af゙ざairs Mysically imoossible．Lt was then pos－ tulated that before such a state o－How was reacnea the fluiä＂broke＂along certain surfaces，these surfaces rearin－ ing as surfaces of discontinuity，the dir between them being ＂dea ${ }^{\text {＂}}$ ，i．e．，at rest，itin a constint pressure tinroughout． Thus，according the thio thoor，thu fluid instead of bending around tine sharp corners of a olate witn infinite velocity and infinitc negutivo pressure rould shoot past and leave a Hacs of still air behind．Whis theor proved amenable to an－ alysis $10,11,12$ by neans of certain processes of mavping on a complex planc and calculations were made frean coses． It was found that there was a resistance offered proportion－ al to the square of the relative velucit of lluia and body， t．ius far agreeing with experiment．Lhis was a great biep in
advance but firther experiment soon showed esseatial differences beuween theor and fact. ror instance, it was found by experinent that the i゙luw arouna an aeroioil was most sensitive to changes in its upper surface. un tse theory O i surfaces of discontinuit, tirere is "dead"air at the back, anu changes in the uvoer surtiace can nave no effect. Furtrer, it vas iound that a region of "dead" air did not actually exist, but on the contrary tnat tiere was a region on violent turbulence at the bacin. Apain, the conputed values for the resistance absulutely aisagreed with experimental values. A little later the mathematicians working on the problem showed that it was impossible for such a surface of discontinuity to be formed in a finite time in a perfect fluid, and trat, if formed, it was highly unstable. In fact it was show: that the surface oï discontinuity was equivalent to a vortex sheet and tended to "roll up", so to spear, into a series of isolated vortices.

Ine Vor: of rármán

$3 y$ this tine dificerent experimenters had succeeded in taking photographs of air flow past various bodies, ana these photographs invariably shuwed vortex aotion at the rear of the body, except in the case of "strean line" bodies. .he nort athematical attack on the proble.. was a flank one. It is impossible so far to solve the eneral eauations of vis-
cous fluid and thus to compute the flow. \sim vortex sisten similar to that observed vas assunced in at perfect fluid and the resultrist motion was studied. Tórránr was one $0 \underset{1}{ }$ the pioneers in this kind of investigation. the first problem discussed was the stability of several vortex arrangeneats. It would seem tat the most probable arrangement in the case of a symmetrical body would be two parallel rows of vortices equally spaced, the vortices in one row being exactly opposite those of the other, and rotating in opposite senses. rárrán showed that such an arrangement was always unstable no matter
\vec{C} Cl Hos probable is two parallel rows, staggered wi th respect to each other by a distance equal to one half the distance
 between two vortices of the
sase row. It was fund by Kárán (the calculation is -ivan in tull in a paper by de Bothózat shortly to be riolisied in the report or the rational saviour Uomittog for seronantios) tat this system is stable, provided the ratio oil thc distance between
the rows to tine a＋st．wnc between iv，vortices in tne sane row（ $\frac{h}{l}$ in tne figure）sas a certain vilue，manely ．zư． meanurements on photographs ot acturi＿．．．at at distance fron the body gave a mean of ． 29 ．jeveral as：umptions meale in＿úrmán＇～culculations sinoula be noted at once．I．tne iirst ulace tne viscous foorces are acglectea，attno we are not aure t at they nay not seirously nodify the arransement of
 seem to indicate，hovever，that this omission is warranted， and uevy ${ }^{14}$ nas also sinown mathemetically that tine effect oft the viscous t゙orces on the arrangeraent is negligible infofar as the motion et a panticular instint is concerned．In the second place，the most serious objection is that tho vortices are assumed to be of infinitely small cross section inis is undoubtcaly not true in oractice；ana lise 土̇act oł i゙inite section probably accounts Ïor mary ohenomena observed by the autior． Kámı́n，a亡ter discussin tac stubility of these systems， then proceeds to compute the resistance oi a bouj ior．1ins such vortices，by cornvuting the momestun iosit in sivindofí もฟo vortices．He finas that tie resistunce is giver by tile formule which has alreade been exocinaentilly veriticed for a
 ρ the density，V tho velocity，unu u a coeificient，non－di－ nemsio al，aepencient on the cjuiliguration o工 tae vortices， hence upon the shape of tho vodj．Lis calcilatea vilues

 more recent vilues, tho oi the same order on ad ituae.

It is to be noted that the weasuremonts ade by K'r ín are on photograins of the flow or iater, whereas tie results OI゙ -öppl are on wires in air. Wurtnermore the vialues of $\frac{V L^{\prime}}{\mathbf{r}}$ in the two setia oi experiments arc wiaely different so tnat in any case the results are not comparable. .ane anthor finds for a value ofi $\frac{V I}{r}$ equai to that in níc.án'e oxperiments, a value of tic cooefiticient in good agreement witr Lírián ${ }^{1}$ s value. Thus it is eviaent that árnán's picture of the filow is close to the true state of afrairs in sone cases.

Consideration ol luid ztresses

The notieerible thine about the preceding investigation is trat it is a flank attack. We wowli like to frow the wechanism of foradion of inese vortices and a great many otiner things about them. -ns physical properties which surely deteminc tiese tnings, pnysical properties whic: have been entirely overlooked, ar the stress cnaracteristics of the tuia。 It was this omission that caused the poiential theor to fail; drik, before we can make a direct attack on the provicm, ..e must study sonething more about these tiluid stresses. , ve are familiar wit.. tho fact that in an esastic solid, wher tio stres reaches a certain value, conditions change entirely. .nea the clastic limit is reacied the wenomena are essentially different. so in a fluid when tho stress reacnus a
certain value, it will "prear" aia ${ }^{\text {a }}$ benave quitc diaiferentlo. ur. àe jothézat nas voriced uo this aspect of iluid aynanics perhaps more than anyone else and his conclusions are oi great interest.

In an elastic solid the factor determining tho stress is the strain, i.e. the displacenents of points in the ncighborhood of some point relative to that point. In a fluic on the other hand, ths deternining factor is the time rate of change of this quantity; that is, the velocity gradient, depending upor the velocities of points in the neighborhood of a point relative to that point. At every point oi the fluid there is a certain stress determined by this; and, when the stress reaches a certain value, the iluià will brear up into separate parts (as in the crest oi a wave winere the stress owing to tne weignt breans tie mave). Mhis coadition is unstable and passcs over into a vortex systen, provably thru the intermediate süage of゙ the surface of discontinuity.

A specific illustration men mare this ciearer. In the case of a cylinder it is not iuconceivalule tiat at very low speeds, streamline flo: results, and tiat the drag toree is onl. triat owing to skin Iriction. Is tne speed increasus, tie stress increases, until inalld the iluic broa..s up into separaie particles; immediately t e pressure behind the cili der rises as the fluid t:rere comes to rest. Ihu stress in relieved and a surface oi aisco timuity is f̈oracd. Inis brea s up into tre vortex sjstor described before. Ihe tues ion at onco arives
in the case of \& sfinuer, since to strcamline 1% is sumnetrical, as to mhy tuef fluid bremks at isa back Ena not at tas inont. Wis is eviaently ovinu to tho viscosit. Sac eifect oil viscosity will be to slo- up the fluid ma tmus increase the strain at the bac. Hencs tho stresses at the back will be reater than those at the front and thw luic vill break at the back first.

It is of course evident why the vortex s.ister is oit the "stsggered" type. cérnén showed that the "symanetrical" type was wnstable, and tio physical reason for this instability is trat any siight aisturbance mares the fiow unsymatrical. After the aisturbance is over the Illuw changes bacs to its original form but owing to the inertia becomes unsymietrical in the opposite maner. Thus a periodic change in the flow is set up, whicin prevents the sirulteneous formation of the vortices. The vortices are Iormed altern:tely on eacr side.

A word might be said about the pnenomena at the surface OI the body. At ine surface itwoli tha velocity of the air nust be zero, but at a chort distance it ney have inigh value. Hence in tais layer where is a vortex sheet, ana the same piocesses or brearing taring place. who energy uissipatea inore accounts for the sair friction. It is probeble tiat this se. e trocess repeats itself at a higher speea. whis new fly involving vortical motion also produces stresses, wid in time tiese vill again rise to a critical value. Ins existonce of a second critical velocity as actualı bcen obscrved. has vern considered from a slightly different standuoint, namely fro. the standpoint of dimensional theory. According to the usual derivation ${ }^{17}$ it is assumed that the force carl depend only upon the velocity of tho iluia, its density, its viscosity, and upon the dimensions or the bod. . sinus on writing wow the dimensional equation, we have that

$$
\left(\frac{L}{T}\right)^{\alpha}\left(\frac{M}{L^{3}}\right)^{\beta}\left(\frac{M}{L T}\right)^{y} L^{\delta}
$$

must have the uimensions oi a force $\frac{M L}{T^{2}}$. Hence we mine as conditions to determine α, β, y, δ

$$
\begin{gathered}
\beta+y=1 \\
\alpha-3 \beta-y+\delta=1 \\
\alpha+y=2
\end{gathered}
$$

These are not sufficient wo determine aiL $\mathfrak{H} 0 \mathrm{ow}$ quantities but expressing the three others in terms of y we have

$$
\begin{aligned}
& \beta=1-y \\
& \alpha=2-y \\
& \delta=2-y
\end{aligned}
$$

Hence writing \boldsymbol{f} ion density, V for velocity, 山 tor a linear ainension or ̉ the body, and flor tine coeriicient or viscusity, the force is of the form

$$
\rho L^{2} V^{2}\left(\frac{K}{V L P}\right)^{y}
$$

or, since y is indoterninate,

$p L^{2} V^{2} f\left(\frac{r}{V L}\right)$

wisei r is the sine:atic viscosity coeflicient, equa to $\frac{k}{\rho}$, and f is sonc function us yet unaetermined. lence, if tuis tneory is correct, the coefficient of resistance shoulc be a frunction of $\frac{V L}{r}$ only, or is air is used, or゙ the product VI only, inciepedont oI V or I separately. the theory has apoarently been verifieu in sone cases, but this is no guarantee for its truth in all cases.

Several cilticisms, ver. vital oncs, mad be at once otifered. rirst, tho results are wron; if any factor as been overlooked winich affects the force. Lxperiment is the only way of deciain: such a point. In the second place it see. s tu tise arthor that a ...istake nas been made in applying the t.sory itself. Te are studying phenomena going on in the fluid; and it seems perfectly logical that :ie must then confine ourselves to properties of the fluiu itself. that a priori reason have ae to believe that the length of the body can airectly afifect tro force, any more then the donsity of ine material of wich the iody is made? The lengtin of the boay can only affect the force if it cnarges some lencth in the fluia, シor instance the distances betweon the vortices in tise distriuntion mentioned before. shus we must remomber that the L in the formula is a property of the fluid, not of the body and we can substitute one for the other only in case one is alwajs the sume
function of the otrer. what this substitution is not alwajs permissible appcars from the experinents to be described. he llovis not always similar in the case of different dimonsions of the boay, as the dimensional theory assuraes, without dezinitely saying so.

The remarks made proviously about stresses seen to indicate so ething antagonistic to this form of dimensional theory. por, in order for stresses to be the sarne, $\frac{V}{I}$ must be constunt, (I being again a length in the iluid). Thus it appears that, if there arc critical velocities, i.e. velocities of tlcw at which the neture oi the flow changes, they should come at constant values oll V member, however, tiat in such cases ol critical velocitjes the stress may be constant over a large area and the break may ta e place simultaneously over this area. In this case the force and critical value will devena not only on the stres but also on the area over which the break taces place, hence, on the whole, on $\frac{V}{I}: I^{2}=V I$. Thus, unless the break taces place only at a single point, strese considerations yicld the same law oi similarity. Te must however renember tiat the dimensional 1av fails if ve have overlooied any factor.

$$
\begin{aligned}
& \text { Apoaratus } \\
& \text { Tre 'rumel }
\end{aligned}
$$

dards were pluced at ay dispusul b, 山r• دriggs. As trare is no published description of the tumel it hew not be out oi place to give a brief account of its principal featrres hore. The tumel, similar to those at the riutional Pnysicul laboratory, is contaiced in a large roon, the air being draw thru the tunuel by afour-bladed 9 foot oropellor and returining thrv. the room. 'rine roun is 69 ft. 10 in . long, lo ft. ni弓h and 30 ft. 4 in. wide. The tunnel itself has its aris along the long aris oi the room, is 45 ft. 6 in. total length, the propeller tips being 13 fit. from one end of the room. The orin part of the tumel is straight, octagonel in section, 50 j/4 incnes Detween opposite faces, and is $25 \mathrm{ft}, 4$ I; 2 in. long. ifis portion is built of wooa supported by \& ...etal framework. Ine entrance consists of a wo:den fremework 4 ft. lons covered with airolano cloth, romaded off to aanit oí easy iniluw. ihe exit
 in diamcter at tro outer end, i.e. approxi atcly go half ang 1 e Aitcr alloving for a swall straight part et eacin cnd were the junction is made. mins exit cone is uuilt up of a woodel franemoriz covered with airplane cloth. A woden ditfuser is usod around the exit end. 'iwo honeyculns are used to streigiten the air flow, one at the exit eud oi the woisins oortion, tho uthor $21 / 2$ Icet from the entrance end of the :orrin nortion. ine propeller is driver br a 100 H.P. D.C. motor. The nutur is controlled both by inserting resistance in tus armatire whe moinsertin resistance in tre field, anc aje uc run nitn tie araa-
ture either on 110 us ¿えú vults. Fine line vollage i only
 others being ver. steady. -1 triverse OI tne tumat whowed variations in velocity of as unc. as 2., eltho lom the most part they vere less tnan tnis, a f̈air average for the part occupied b_{r} tne rodels being $\cdot 0$, . Wis traverse was taken at oue section only; for due tu tre stress ol wer wor no otisers wive been aâe.

Lhe talnoes

The tumel in equi jped vi th t.io balmaces, one ior aerozoil work, tie otner Ior hoavier woris. Ine finct bulunco is similur 18 to tne National physical haboratory jalance in ever, way except as to tie neans oi -aring torque measurements. It is sensitive to .0001 lu. Âne largest -orces micn can be ...easured on it are u lbs. Fence it was imoossible to use tnis balmocefor aमl tne crlincers; ana, an it was cesired to obtain rosults whose relative values werc accurate, measurements on thia bilance were uiscarded in plotting iny curves. Me ot en balrice consists ou ¿ s., sten suspended by two tinin steel strips, and measures tie force zlong tise ind orimuril. $1 \vec{i}$ litt casurenents are desirea, ouents carl be tanen about a secura set ul blaqes, who iro. tuese ting Iif゙t force nia. be conputed. In uis wor tin: seconu set or inades vas not usea. ine Dula ce is sensitive to. Ul 1u., a will tate lorees up the tie stre:gtn of the blitues. of than noints olotied were obtiained on this Dilinace. ti ust Du re.el -
 forces axe obtivise by assumin the ioxee to act at the cent ter of sjuactry or the body．Nuly bouizs ita a norizontal plume on synuctry can be used．
gruat.
It must bo rempancrea thal a fitot tuise gives us onr quartity $1 / 2 p j^{2}$ only, waore \boldsymbol{P} is the aeasit. oti whene. it iss mu usual. in werougnamic mork to mare the caluulation lor V every tiae. since tine iorces are assu..ed to vard directly wa civ^{2} tilis quantity aluile is corputeu. If a visluc for T is given, it is deternineú Irom tnis, using "standard" aonsitz。 Thus tic true value oi V is not obtained. (The"standand" dunity usea ai the bureuu of Standards and also at the lia-
 pressure.) This is unfortunate then we consider the generai rovmula for the rorce $=\rho \mathrm{V}^{2} f\left(\frac{V L}{r}\right)$. Por a change of temerature uoes several things whose efiect may be shown by an example. suppose we tant measurements at $25^{\circ} \mathrm{C}$ instesa of our standar $10^{\circ} \mathrm{C}$. Laning tine ritot reaking iacntionl in tne two series oi measurcmonts, $I / 2 \boldsymbol{p}^{2}$ is tne scano for botin te... eratures. On tie oiter rena p nas cheingeă. V.as actually been increased by about $2,(d e n s i t, ~ b o i n g ~ L e s s ~ b y ~ a b o u t ~ 4, ~) . ~ r, ~$ Viscosit. (static) equal to the density nas also changed. The static viscosity has increaned by about $3 \mathrm{l} / 2,2$, the uencit, decreassa by 1,u, hence the zincmatic viscosity as a wholo las increased by $\eta I / 2,2$ aporoximatcly. Iemee $\frac{T L}{r}$ has been decressea, or $V \mathrm{~L}$ (i䒑 we navo assunea $\boldsymbol{\gamma}$ constant) has besn gecreasuà by 5 I, z, o. İ has not benn consiuered necesur, tos th is rediction Since no investigations ave been ade on ine cnynge in aerodyname forces witis temperature, wha wince tre uime isionl lant
itoeli in present Horm is not true. Lilevive no rccords ul pressure or o-moisture content nore wide, whut tiese allect t.e density also. Other investigators do not state whether they iake sucn comection or not. It seems important only in the exact locertion of critical spaeds,wnere the coefficient of resietsnce crawges rapidly with VL.

The liodels

The nudels nave already bee: aescribed in a general way. 5/2,", Lhe mooden oies ($I^{\prime \prime} .2^{\prime \prime}, 3^{\prime \prime}, 4^{17}, 41 / 2^{\prime \prime}, 5^{\prime \prime \prime}, \wedge^{\prime \prime \prime}$) were turneà by L. H . Leach, a Dattern ...ainer oil BaItimore, ...d. Diey were wecurate to . Ol inch, botin as to beine circular aidu as to beins strairht. 'Wine vooc was wite pine, anc the surfaces were coated witi sherlac. the brass ones were wade or commerciat brass tubin: and were accurate to . Us inch. A 1 were soproxi:2ately I8 inches long. Inc dimensions are given in table i oi the Appendix. Hhey were inela on the balance arma by heans of a 5/lo inch steel spindle.

betinods oi i.casuromont

It was advisable fro. the tileoretice. standpoint to obtain resulte anplicable t. ininite cylinders. -o secure this resvlt, the "guard ring" principle vas usea. Lwo snort cylinders were placeo in line witn the cjliader on the bilance, one being suspendeu iron the rion of the tunnel and the otner being on the spinale. 'he tip puand :as in line wiil the oul-

$$
x
$$

inder wiles the belmee \because is in it. zero position dráa cheared ber just enough t, rllow the nocessary play. These uards were 5 inches long. Who this is ratner arbitrarJ, it waw Sound experimentilly that this lengtn is uite suriicieit. Ineasurements were taren as follows. (Iwo oinervers required.) IItil tire colinder a d one uard on tho bulance arn as aescribeu, the observer oi velocity signaled vinen tie velocity had äo.e derinite vaiue. Nine observer'at the balance adju:ted the veignte so tirat the beain was on the averaee in the zero position. Miss was ropeated for the whole series of wina ve_ocities. Ineil a secona set of readings vas tanen with only fae lowes gnard on the balance, the cylinder being suspenaed Irom the ruor uver the suara so as to secure the sane flow. Che second set on adings was thre at aproximately the same speed as the first. in computind, tue second set wece reauced To exactly the sane speed as the inist, assumin the square Law over unis short range. Ine a l. Aarice was maae for the lengtin of: the bulrace arn, wo explainca in the section on balances. . O winasnielà was useu, ins it was thou nt besi tu avoid and poscible interfercnce ca sea by it.

..esults

Ine resrlus : primur, iuterest are plotted on Jurve 4 .

 tinn i. trat în cylinders oi aidncter below, " the rowistance coefticient depends not only on the proauct VI but al-
 as tnat on a "" cylinder for tine same valuc ol vis, tnus inaicuting arl eseentici tuilure of the prescnt uinensional Law. Us tıe other nand, it is noted that the coefiticicnt fur the I $I / 幺^{\prime \prime}$ cylinaer, winle loj greater than tas for the z" cylinder, fior values oi TI up to 8 rt /ace., coinciues ritin trat
 noting that some critical change tases place in the ilow about tho 1 I $Z^{\prime \prime}$ cylinder at this point. In: Lly, is is to be noted thet for velues of \sqrt{L} in excess of 28 st / sec.all af the curves show a urop. Indicstions are tiat a criticul vulue or Is for anl the eylinaers is being zowroached. Hese ire the essentisl ficatures; ana it might be pointca out that none of these are ntirely now. or, lookime at the figures given D" Horris and Inurston (see Curve 's) it is noticeable that the 1 1, $4^{\prime \prime}$ cylinder gives a coefiricient mucin less than the I" whd tne 1 1/2" less tian tne 1 1/4", and so on to $2^{\prime \prime}$. IXBir val-

\pm	J上 $\mathrm{E}^{2} /$ sec.	Juris \&nde Atrsiton	ATILTos
I'	2.59	. 56	.61
$11 / 8 "$	i. $0^{r} 7$. 50	. 56
2	4.91	. 44	. 49

＋1e asreenent detween the relative vilues is strinin； absolute velues differ by 10，－urtrerinors，altho the brit－ ish investigators do not carry their measurements to diancuors greatar than I I／4＂，a carefor insucction of their figures shovis that the coofficient for the $3 / 4^{\prime \prime}$ cylinder is slightly hi her than that for the $1 / / 4^{\prime \prime}$ cylinder even for values $0 \underset{i}{ }$ iL ，proaching to the first critical value at $V L=.25 \mathrm{~L} / \mathrm{sec}$. Finally althu the wor．at the assachusetus institute ö̈ Hoch－ nology can not be directly consarea，tho resultis obtaineu is $1-$ so shuw tiat the ceeficients for at＇b／4＂cjlinder are cefinite Iy ineser than those for a $I^{\prime \prime}$ cylinder anc that those for the 1／¿＂cylinaer are detinitely higner than those for tre $3 / 4^{\prime \prime}$ cylinder．Tius tac dependence oi the rosistance coefficie：t On size at idontical vaitos of VI has been shown beture，tho no onc fus aeinitel．pointed it out．

Secomul tie ezisterice or tire scconi critical velccita nss been notea D_{e} ज．I．Tat，on in c vonilaentic．Reportio issuea
 pressure aistribution $0 \ldots$ a $0^{\prime \prime}$ aylinder anc－ound that approx－
 characteristics oi ho pressure destribu゙vio：cn＇mgeà．is r－ suats merc qualitative only and it i．seen uncn the rrcuent ロー
 k lown，the peculiar benavior ol the $1 / 2^{\prime \prime}$ culi uer ian wot b心－ fore been noted．

Cortider jt er resulti might be niotou. If g " erlimer

 Bi. After standing lur a weck, a ee si d run mou ..ide wht the resistince vas founu to have its orisinial velue. is is not much beyona tie erruss oi exnerimont, anh it voula tnerelore see.n that waxing ure suriace has little eifect. Lle wou wu bress cylinders checs within tne emperinenticl errux, su trat "ahm' cunclusion ${ }^{20}$ as t the indepenaence or strin ariction in the surface so lon! a. the surface is not visibl, ruveh seems justiried. in ivestiguting tac accrrac, 0 - tire resdts, ol.e weasurchents on uhe "end effect" were ade. Mthe 1 " cilinder it was iouna trat the onission oir the guards decreased une
 nand, ti_e omission oft the g ards made oractically no difirerence, ii being less tiani $1, \ldots$
\#his wes tricd with the crlinder bouh verticel wa hurizontal. It mis thou.i.t at 土irst thet since the bunce casuags mo ents only, trat the cainge in tie torce wiznt bo wi.n.ze wltes tuo change in th noment ie small. ino test mitio ine cilincer hurizontel \hat{c} oris t at this is not the cane. I r th the c, liner horizont:al \because e no: t a the torce acts in t.a, sum, nori. On-

 Ver. Weil the valles : ith tha zurru. ow tha urivism inventi-
 made for t-e end by usint in tne calculations, valuo in
 tual lengtn. thus it anopari the toe end exfeet à es not increase for tine seme lengtn propurticnel to tne aianeter out tıat certain peculiar chanses taie lace in ulu flov about tne ends.
Iastly, on loosis at tioc points anc tre i it iz seen that were the curve is droppin, tne poinis fill into two sets. Hiese two sets vere twren on aifferent aa゙s, t.e temperatrre on the two days being different. The stresses in the liluia unaoubtedly depend upon the temperature, cna it is not to be considered reiarkable tist under sucin conditions the change in low shouli occur at aifferent points. Ehis niole Uestion of the effect oi tanterature changes o.. air inlow, esvecially as to the efiect on the frrees und as to tre erfect on tre critical oints, is one t.at deserves íurtiner study. 'or instance, it ma, be ossible that tinc stallinz angle of cin airplane is aifferent on a hot da, Ircil this on a colo daf.

Accuracy

LItho some i.ivestigator., in vina tume cx eriments claim au accuracy of as mucir as 2, , it is extrenel, unbutut Whether a greater accuracy tagn 0,2 cs be outiminad is reLative villes, and it is highly inorobeble trat sutacmared oil IU, ctar de obtained in absolute values viun preseat -etious. It is. In this
reason trat must stresin han been laid on relative iccurace, relative charucteristics, cund relative values. ct us filst cosides sone of the things whica limit the relative iccurncy In the first place, there is tre quesion of the vern nature of the uantity to b, measurcd. Lne effect oi tine vortex flor, which his alreaa been described, is to produce a iurce whose 4agnitude is continually changins. Under ideal conditions, wit: vortices formed at a uniform rate, tise furce :ould be veriodic and it ought not to be hard to detect tho periodicity at slow speeds. Bui great complications are introduced by the íluctuations oI specd in the tumol. Hinese entirel, diorupt the periodicity and canse what may best be aescribea as an irregusarly varyiag ilow. Lisus wiat we atte...vt to ..ecsure is a thme average oit the foree. \therefore ow in suen cases the accurac of the ...caswimp amparatus i. o䒑̈ no advantage beyo a a certrin point. In fact, too greai sensitiveness may be madesirablc. To maze the measurenent more troulesome, tae amplitude o tnis irreguiur variation is ver, sensible ebroared to the absoluve value of the averuge force. Ine conditions or casur ont are entirely siailar to those revivilig al tne "burble"puint in aurofoil measureants. re.tce eve relative accurwer is not
 wents repeat aud fit a smooti curve tait well.

In tine sceu à place, tise question oj vards J_fers uifriculuy. It has alread, been entioned that the Lergt.. was
found entirch，suificicnt．Misc only other weswion in su tu their slienneut．ft is oi course physically imposcible to uligu the zuards exactly anc．th：floxure of thc corinuer witn increase oï speed soon changes any ecourate alignmerit winch ma，hevu been made witr the air at rest．ience since the＂cylinuer had al－ ready shom the greatest end effect，the effect of lac．of alicn－ ment of the guards wai tried with it．It was iounci tint movin？ the guard towerals tine direction from wnich tine winc was blowina uecreased the $̈$ orce，movift it in the opposite direction inc\％a．－ ed the force，the total change on moving the aara from a posi－ tion I／4＂toward tie front to a position I／ $4^{\prime \prime}$ tomerd the becr being \bar{G} or 4, of tho tutul force．H1Hs in the actual experi ient the error owing to $1 a c, 0 \perp$ alinnent cannot be preator than I,

In the third Dlace，there is the error oring to the flex－ ure or the cyliner．Nis to inlexure ih：leve＝ar．oi the Weight of tho body will be changed and the riunce will be snon－ cntly to，hiah．Lhe error own to tis case is slicht，sice tric weignt of the e，inicuern is not great und tr flerame is snrzl． sinally，there are t：o mutal avoiaable errors，oi mivtases in resuing or comuting．

As t，tic absolute accurace，it a seen strange thet no zreater accurac，th IO，is clai ca，but neac arai，a cotain
 inate．minis ie the uncerteintJ ac to tio uistribution in サーフー
-
 inn on tho iurce. atot eilim tiun aives t.lo vel eity at some one point. Th it it vossibléror whe distribution ar velocity to be oi sucn a iatrac tinit great errose ner be introanced. Hor we .measure momonts, only, whe i inc ifreguncritios are such thicu the velocity is luw on voth wices or isish on woth sides, at is Irrequently the case, our ocsultant moment will be incorrect.

Mne errox wue to thie ceanse nignt anomt to as mein as in an extrenc casc. bret in audition to tri drimary exeet u variation in velocit acros tae section taere is ine second... effect on the fion wia tho conse ment effect on tho xuce. at this we know notria but it is possible the the flow me, bo so Roditied in woh a hanner ue tu intruance lenge orrore in thi
 the section on balances shw a unjawh dirferuce oll doprai-
 uncer similur conuitions; ade it iu iof unie resson the to
 triurtion is undondraly =esponsible it tric lue ar atree mont amony sone of tho invistit at rs mentionca bezore, wa can nut be a luwed ior. vor ir ver acerighe treverse of the themel is ade, one is suro thet tho aoued in ..s changoa the aictributian.

 are not certwil to wore tisin IO...

4., tr. a

 anu see if this would not throw some lignt on the changes tiňing vlace. Ling measurenents arc only rougin, but they field sone interesting results. Lne metnou was a very simple one. s. single small hole was drilled into the calinder at a distance of about six inches from one end. Inis hole could be Dlaced in any position relative to tne wind strean bu simo-e rotation of tre cylinuer. is special fittint was mede, con-
 t.1s tup aru. a bexirig in wich t e pipe could turn. a pointed wers $\dot{\text { Hexeu }}$ to the bearing and a divided head to the pipe so tinut the anguler setting eoula be read off. who hole was connectea by ...ealu of a Inbber tube passine thru t.e top o tin iurnel to onc side of a siant zauge, (tinc sum io vac uwgu ioi specu cau

 r:oulu revail if tacre vie e no çlinảer reselt. '- c veped can ol course be detcrminod fron une ..axinun ressurc ciliference on the front $0=$ tiee cylinaer, wich is l/zp \boldsymbol{p}^{2}, but reaaings were taxen by means of the stutic plate comected tu a secomá inclined munometer. Thie secona anometer aas a comparatively jarge slope and contained vater 0 tat ts indicetions are not very accurate. Howev.r ǐ servou to caride the observer to kcou tire speec farirly cointent.

It is to be notea that this method of nasins a hole in the surface aves not necessarily give us the true pressure on the cylinder. Ye have no iaea as to the modificutions the hole may introduce. Te know that there is on the surface of the boay a vortex layer, winich causes tire phenonenon of skin friction. llow vortex layexs inay sustain a very reat difference in prossure, as for instunce in the asse of the vortey layer bounaing the slin stream of a propelier. Whether the hole breais thru this vortex lajer anu ives tin pressure outsiae it, or whether it gives eone other ressure we do not innow. Lowever, tais tethou vill sive no mo in ice.tion -i to wether inc llow changes or not, ana tnau was its tressut Turpose.

The dianeter or the hol. nv in all cases $1 /$ lu incu.
 noles were not usel bcculse or the re triction inirud ced

$$
\sim
$$

$$
\Sigma
$$

 these the "म" mas In at inn speeais, tne," at twn surcas sud the others t one speed. In a 1 cases cvide.ce ol the inuctuations o.. the 110: vis evident in tio flactuation uit tho gauge.

Results.

since the resulti are nut ver: acc rate the raadins were nut reduced to absolute pr ssures, but the gar ge reading itseli was :sed, it being proportion 1 to tho oressire. It is :sual in plottirs such results to olot rro a circle as base, lasing off the jressures at uin verious points along tho radii thru these points, uegative wifferences being toward the conter. In this paper, to enable a lereer scale to be useá, tine negetive prussures are plottej ourmards the same way as the positive ones, but no coniusion ineea arise if it is reme bered that on the iront (toward tho winc) the pressure is areater than the statio pressure, while m the bacir (and ans part way on the front) it is lesu then the static pressure. these curves are shom in the a peinaix, ans. $5,6,7,8,7,10,11,12$. The ordinates are gauge readines. so get absolute units it is only necesser tu tiake thw prossure on the zfont as .j00 awa the others in proportion. At first wight no oswential difference appearis.

Ic of about 40° Irro．trs W° nu direction．Un wal tho sres－ surc drons below static very uickly afterwarn，tho aximum having a ciluracteristic form ana vocurring at aearly the same angle，$\dot{6} 5^{\circ}-70^{\circ}$ ．On all the pressurc arop on the bace is nearly unifor．n．So tiat apparently thorc is no violent difference in the flow．Yet iz we examine tin curves nore closely，as inaccurate and ircozuar as are sone of tno pointa， onc fact becomes evident．This is that the relative size of the hump on the front ana the hump on the bacs，in other worus tine ratio of the oressure increase on the front to the pres－ suce drop on the back，is very different for the $l^{\prime \prime}$ cylinder from that for the otners．tho figures arc given in rable XIII with other things，but they are repeated here．

```
Dia... OI Cyl.
```

ユ＂
3^{11}
$41 / 2^{11}$ 6°

Latio oi maximui in－ crease in pressure on front to sverage de－ crease in pressure on back．
$1.101 .191 .20 \quad 1.05$
（at di土ペèont speeds） 1.74 i． 64 1． 47 1.54

Tho the variation for any one cylinder is great，（Ib J），jet the difference between tne $l^{\prime \prime}$ and the otheis is mucin greater， （Buju or nore）．Iurthemure，the three others are mitin $2=$ ， of each otnor．Wiun trore cun be littlo dabt tat the hioh
 so.ne difference in the HIOW at tie rear on tne cirliner whicis causes the prossure on the rear to be yurtirer reanceu bol or the static pressure.

It was decided to integrate the pressure ovec the surface and see how well this cineced tin autuai fivice. . Ji this purpose the secona sexies of curves were pl tted. ふuppose at any point of the cylinder our pressure is p. Its
 contribution to the conponent oí tine ioree aloilu the ind is Pdis $\cos \theta$ (see figure), but ds $\cos \theta=$ dy. Hence the total force is \int dey dyus, iI me plot - dgainst y, or wiat is tne sune thin" against sin $\boldsymbol{\theta}$, or what is again the sane thin., agininst tice oosine sut the anIe ut tie surface ele cit to the wind, tne area of our curve will reocese.t uhe total force in the directio:l oi the niad. These areas ve: $\begin{aligned} \text { Measured with a pluineter, th, rewult: be- }\end{aligned}$ ing given in able sIII. sTo. taese areas, anowin. ire wcules, t._e iorce on tne c..linder could be computed. Iite resintus weh computationi aco shown in tne siun table. Iittle con b, inferred as to tne resulta, becsuso of the uncentainta as uo the velocity.

iave a njeh degree ol accuracy. neveral wiln o revent secracy. In the first place, the ressure measuremonts wore aade at ε point in tire tunnc. between tue two ber rees, wnci a 11 the uncertainty as to the velocity aistribution ucross the section einters. In the second place the pressure behtives as does theforce, varies irregularly, esneciall. at the point Oi maximun pressure decrease and on tire back. lnis is eviaent fru... the nlots. 1 we acslect the anximu pressure valre of the velueit, as being more unreliable than the value obtainod from the readings of the static plate, we Hind thut the calevlated coefficients do not differ mon from the ones observed on the balance used in the force neasurements. Un tine other hand, if we use the maximum pressure valucs, we get fair agreement with measurements on the secunu balance. Hence we can place little dependence on the pressure integration ana must regard the curves simply as iving us a general idea of the distribution. -ne urominent featares are tne general shape 0 the curves, the aifference in this shipe in the case ol Iaree and shall cylinaers, an tho very great unsteadinesw oi tilc eis inch as showing the approach to trie critical velocity. ceference haw inlready been made to the wod: of mulor. Hu fornd at ni her speeds that the oressurc cecrease reacnea \& largo maximum at 90° away from the vind, anu tarat the constint pressnie prevailed rion 120° to lu0 awa, fron the wind. e^{2} also nade some prossure measurements on a ell eylinder anu fond
taat tne length un tho a.linuer wooified his resklts nroIoundy. . .c triek i cojlinuer vits maruc suproxinat an mos inininite cyinaci, and also one eigatee.incocs lo.1. - ic principul differcnce V as that in the case of the ininite cosinder the ratio of the aximu... pressure on tho front to tie average decrase on the baci was about 1 , wnereas in the case of the lé" c.jlinder it $1: \pi: 2$ 1/4. Now in the present ors tne value is nearer 1 than $21 / 4$, so thet it sec!s there is quite a $\overline{\text { a }}$ ifference between the tun els.

It is thus see that the inlow about a $l^{\prime \prime}$ cylindec, $1 / 2^{\prime \prime}$ cylinder, or $2^{\prime \prime}$ cylinder is different in some respects from the flow about a eylinder of hioher diameter. "his makes itself evident in the forces by the fect tirat the resistames cacrein cient is a function of the size as well as of the parameter VI. It shows itself in the ressure easurenents by the fact that in the caje of the shiller cylinders the decrease in pressure On the back is zreater in propurtion to the increase ir presSire on the front than on the Large cyliaders. ilotwithstanding this the flow must be of sonevinat the scme nature since tne ior... of the pressure aistribution curve is not metcrianla crangeù. Whe next nuestion is ac to tho best hruotnesis to enplain trese facts. Thatever tin fuctor that has bes overivoneá
 must begone aeglisiolc or constint for both lon an in vith cs
 betweer forces fü t. 11 uianeters botor: l" is dmal sud thut for el over : 'l is neslizible.

There see..s to bc one thinc trat may explain tacos iacus tho there is no absolute proof. Ane factor trit . .f cease tnese changes is the finite size oi tho voitices which are forned behinc tho cylinder. Wher, wher tuo circuar vortices come clo e enourn toonther, the senarate narts of eacrivor .ave different velocities, tne vortex will tex wil \wedge therfore be uistorted, whu we can nu longer treat it wis a filament. Lhus if ow bodi is macue snaller and saller, tile vortices will be brounht cloise enough together さior this action to taxc lace, and the cinaccter of the flow ill be aitereu. Lue vinole question nignt be settica b_{o}. tarine photograpins of air ilu paut aifferent size cylisuere, or by nasia inc necessary atienatical calculations.

This nypotnesis seem to satisfy most of the roquirenents. It vill mesuraioly give a llow wicn is only sliguta different tro. One where onl silanents wre present. ohen tne body is arge, tre aistortion dincop eare we tice vorticui ars not cluse mourit together. as wo ance tho boé s.allcr, the intoraction beco es reater anu gre ior as it ro uirse cnergat tu aistort trs vortices, it yould sec, that tre eilloct :oula be tu increase tho iurce. Incn we :cu tja certrin
 tho aisturtion is so great tut the vatex s, uten cin not exist. Tnus suen a nypotnesis vor accoun our the dondr
 vorilu au the scme. his isatter for forther investigation.
 ocourence on -he secona critical velucit. stil wemain to be expleineả. Hot enowgn wor hat ben done tu justif゙, any aeinite hypotnesis; but it is possibli tnut there ...ev, be several distorted iorms and that as the speed iu increaned the streus becones so greit that one Iom naswes iver iato anutner. 'lisis, novever, is only a oossibility. the second critical speca robably vecurs wien the stresses agein reach their critical vuıue ard the fluiu breaks. That happens then is beyona oun know edge until we have a tunel wich vili enable us to get higner vaiues oI VI. Six incnes is mready Very arge for a $4 \mathrm{I} / 2 \mathrm{it}$. tunnel, inu it is uscless to go hignei by incroasing the size of our modcls. nrtiser hore, because of the unsteadiness of the veloity ol the riné, aciourenents on a $\dot{u}^{\prime \prime}$ nodel could not be taricn above 50 milcs per nour.

In conclision I desime to express mandentecnes to in.
I. J. origgt, wio uroviçeả every ǐucility possible an mas always intexested in tnis investigaiuion, my thenzs to עr. J.

 sifrea sujurdie $a+d$.i. viegon writ tho assistuct in ine ou-

 ther wora will de àone at tne Buredur ol Stendarais.

Joms aoprins university.

June 1, Iy19.

1
Kugleigh－MiI．Ning．us，0．59．（1892）
2 söppl－Jahrbuch der－jtorluftschiff－atucienscse i von ft， 4ter sard，． 310 － $1917, .85$.
 $\therefore .53$, －pri］．1311， $0.0 こ$
4 ت̈père－BulLctin de L＇Lastitut iórotechnirue de l＇universiić山e 上eilie，Vol．If，IoIz．
 Great jxitain，1．10－1911，0．4U；1912－19is，．126．
6 Liffel－ine ies stance of the Air thu sviution．－Timiation vy funisaker． 07.

Hulf－Aviation wnc seronautical ingineer：é，June loly，D．c9．
\because Lamb－Hÿdrodaramics， 0.85 ．
Sowley arc Hovy－Aeronautics，？．46．
10 Heiwholtz－ミhil．Hag．，Hov．1．68，p． 337.
11 ircinowf－irelle，t．Ixx．（1869）．
12 Covile，ana Levy－Aeronautics， 0.53.
」3－árnén－snysiraLische zeitschrif゙t，I912，vol．13，p．49．
14 Levy－ieronautics，1．arch 27，IJl9．
15 we botsézat－Unpublisied．
16 Uonsidential Britisn Report．
I＇t cowley ana Levy－seromatics，． 90.
lð Cuwley a！c uovy－Aeronautice，p．j．
19 vonf deutial sritish zeport．
20 Zahm－Phil．1．w．，vol．8，July，1．JU4，．58．
21 －ecmical aeport oi the Auvi：or，jo anittee，1910－1911，．f1．
¿2 Con土iaential mritish aoport．

$$
-
$$

 lasū, on July 2, lyju. If attencueu the prolic schools ois wo erset County until lyor. His elcuentacy education \because s completed in fine punlic cchouls oi Laltinore. in lvll ne catcrea tue saltimose City College, grianaritg in lul3. ie atricu-aved at trie Johns Hoprins Un versit, in tre fall oỉ the sa.ue Jear. Whe degree of sachelor of ints mas awardea to nim in 1916. Lnising tre Jears 1916-1917 ana 1917-1918 he pursuea gf:duate :ors in Phosics, batho...atics, ana ceolozical thysics at tie Jonns fopki..s University. He atteisued iectures in fnosics unior Professor A.es an Professor \because uná anà Lectures in .athematics unaer mofesion .orley, soressur When and profes on Coble. He enllugeú in so speciul reuäing under nrofessur Eeid. Druine the years l91b-1j18 he was leborarory assistant in riseies, ano durim 191'-1918 loctro assistant to mopesion sues. The derree 0i Naster oi wis was conierrea on him in 2018. ic wa, aice ir lellownip for lil8-1919 wut resignea to enten upon war work at tin surcau oi standards. He vas grantod leave of abeonce wild continued his sudics under rofessor aios. he :ors suiv mitted ïor a dissertaiion vac done at tine sureau o stamasi s.

$$
A P P E N D I X
$$

Tables and Curves.

Tables I

Dimensions oi Cylincers

Nominal Diameter Inches	Material	Average Diameter		Average Devia-	
		Inches	lieters	Inches	I.etors
1	mood	. 9804	. 02490	. 004	.00010
1	brass	. 9985	. 02536	. 002	.00005
$11 / 2$	brass	1.503	. 03818	. 005	.00013
2	mood	1.989	. 05052	. 004	.00010
3	wood	2.993	. 07602	. 002	.00005
4	wood	3.990	. 10155	. 005	. 00013
4	brass	4.002	. 20165	.005	.00015
$41 / 2$	wood	4.486	. 11394	. 004	. 00010
5	wood	4.995	. 12687	.007	.00018
$51 / 2$	wood	5.484	.13929	.005	.00018
6	wood	5.991	. 15217	. 007	. 00018

IlO deviaiion is greater than .Olb in., few greater than . OlO inches. Jacn readirg is tre mean of 20 reauings, two sets of 10 at ends or perpenaicular dianeter., except in tne case of the last two cilinders.

TABLE I, COMinued

```
Dimensions of Cyliaders
```

:Ooi_inal			
Di\&neter Inches	Material	Leigth	
		Luches	Leters
1	woud	17.97	. 45644
1	brass	16.875	. 42863
$11 / 2$	brass	18.11	.45999
2	wood	17.94	.45568
3	wood	17.91	. 45491
4	wood	17.97	. 45644
4	brass	18.06	$\begin{gathered} .45872 \\ \text { (nat round) } \end{gathered}$
$41 / 2$	wood	17.97	. 45644
5	mood	18.00	.45720 fonly measured in plane normal to wind; about l,s out of rouna)
5 I/2	wood	17.97	$\begin{aligned} & .450344 \\ & \text { (norual to } \\ & \text { wind) } \end{aligned}$
6	wood	17.97	$\begin{aligned} & .45644 \\ & \text { (normal to } \\ & \text { wind) } \end{aligned}$

[^0]
Mrasid 1 I - Continued

		C
F^{2} - sec	I.eter ${ }^{2}$, sec	
2.91	. 270	. 542
3.67	. 341	. 544
5.62	. 522	. 545
6.53	. 606	. 540
7.40	. 687	. 532
8.30	. 771	. 525
9.28	. 862	. 509
10.12	.939	. 499
10.96	1.019	. 499
11.78	1.094	. 490
10.7\%	1.280	. 485
14.56	1.253	. 404
15.55	1.444	.476
11.81	1.098	. 493
10.10	.937	. 499

-

…ウッム IV

		C
$-2^{2} / \leq \mathrm{cc}$	1．cter ${ }^{2}$／sec	
こ． 38	． 660	． 500
4．22	． 401	． 500
4.87	． 452	.480
5.68	． 028	． 484
－ 222	． 578	． 494
0.36	． 638	． 434
7.66	． 712	． 493
8.53	． 792	． 488
9.30	． 864	． 490
10.01	． 930	． 491
10.52	． 977	.490
ユ1．¢7	1.047	.486
1え． 08	1．12\％	． 489
10．03	1． 238	.487

```
I/-Hsw IV, vontinued
```

		C
$s^{2} / 2 / \mathrm{sec}$	I.eter ${ }^{2 / \mathrm{Nec}}$	
i. 87	. 359	.487
4.88	. 450	. 493
6.12	. 568	. 493
7.46	. 693	. 486
-. 58	.797	. 490
9.78	.908	. 498
10.85	1.008	. 496
12.15	1.129	. 484
15.39	1. 244	. 490
14.43	1.340	.486
15.57	1. 446	.479
17.11	1.590	. 485
18.26	1.697	. 405
19.50	1.810	.474
15.62	1.450	. 401

ThBu_V

Mbla VI

Forces on 4" Brasi Uylinuer

1.2. 5 , Temp. $27.5^{\circ} \mathrm{C}$

VL
C

$د^{2} \mathrm{t}$-ec	i.eter ${ }^{2}$ /sec	
r\%. 85	. 729	. 425
8.67	. 806	. 426
9.72	.903	. 430
11.20	1.040	. 428
12.2\%	1.135	. 434
10.64	1.266	. 432
14.94	1. .387	. 405
15.97	1.434	.426
17.17	1.595	.433
18.78	1.744	.436
19.62	1.822	. 435
20.99	1.949	.433
2\%.00	2.043	. 434
2i. 93	2.150	. 433
24.35	2.261	.434
20.82	2.492	. 400
23.27	2.719	.400

.

C~BLI. VII

Yurces on 4" .lood C. linder

$$
\text { spril 14, Semp. } 1 y^{\circ} \mathrm{C}
$$

VL
c

Fith/wec	cter ${ }^{2} / \mathrm{sec}$	
7.55	.702	.438
8.49	.788	.425
9.74	.905	.421
11.12	1.033	.418
12.20	1.133	.419
18.47	1.251	.420
14.67	1.362	.421
15.85	1.472	.423
17.06	1.535	.421
13.30	1.700	.423
19.55	1.816	.424
20.68	1.919	.424
21.93	2.059	.425
26.19	2.151	.421
24.40	2.266	.422

¿orees on 4 liz＂lood 心ylinder

```
Apri1 14, "Iemp. 200%
```

VL

$\mathrm{H}^{2} / \mathrm{Sec}$	lieter ${ }^{2} / \mathrm{sec}$	
0.48	． 788	． 440
9.44	． 877	． 442
10.86	1.009	． 429
12.37	1.149	． 432
15.08	1.401	． 431
16.41	1.525	． 435
$1 \% .80$	1.653	． $4 \div 2$
19． 16	1.780	． 436
20.60	1．914	． 429
21.94	2.039	． 430
20.20	2.154	.427
¢4．61	亡． 288	． 425
26.00	2.413	． 421
27.40	2． .546	． 413

MADL IX

Horces on $5^{\prime \prime}$ ，rooa じylinder

$$
\text { april 7, 分emp. } 2 j^{\circ} \mathrm{C}
$$

VL C

$2 t^{2} / \mathrm{sec}$	Meter2／sec	
3.34	.808	.412
12.04	1.118	.412
15.50	1.440	.414
18.30	1.699	.416
21.32	1.982	.417
24.40	2.268	.413
27.46	2.550	.406
30.70	2.851	.370

RADBLS X

Forces on 6" Woou Oizlinäer

```
April 2, L'mo. 20 C
```

VL

$\mathrm{Ft} / \mathrm{Sec}$	I.cter ${ }^{2} / \mathrm{Sec}$	
11.21	1.042	.426
12.46	1.158	.416
14.05	1.305	.425
16.03	1.489	.429
17.59	1.633	.427
19.44	1.805	.428
21.36	1.984	.424
23.20	2.153	.422
25.62	2.381	.427
27.89	2.589	.419
30.27	2.810	.393

H-buc XII

These are not plotted for reasons ex luined in paper. Ire measurements are on a second balance in another part of the tunnel.

> 1" Oylinder

VL C

$\mathrm{Ft}^{2} / \mathrm{Sec}$	$\mathrm{meter} 2 / \mathrm{sec}$	
1.85	.172	.547
2.08	.193	.541
2.59	.241	.558
3.02	.281	.554
3.65	.539	.554
4.17	.387	.551
4.50	.418	.567
5.12	.576	.553
3.70	.530	.560

2" Cylinaer

VI
U
.466
. 456
.447
. 444
.443
.429
.445
$.4 \leqslant 8$
8.48
.788
.451
$9.40 .874 \quad .453$
$9.94 \quad .924 \quad .455$
10.66
.990
.449
11. 32
1.051
.449
12.25

1. 139
.450

LibL」 XIS1

Integration of Preswure auas renents

l!ote-a square 5 swall divisions on each siae is used as an internediate unit in measurinu tne areas.

Pressures are neasured as neads of benzene on a slope of . 18403 (i.e., vertical nead $=$ measured nead x . 18403). This unit varies wit the temperature and allowance has been made in all computations.

Dian. of Culinder

1 I
1
Static Plate Reading
1.35
4.32
20.32
speed Derived from Static
Plate Reading 16.36
29.37
43.28

Fiemperature
24.5°
18.0°
17.3°
i.ax. Positive rressure on Tront
2.20
6.55
16.14

Speed Derived
from i.ax. posi-
tive Pressure
. $\mathrm{F} . \mathrm{H}$.
16.85
29.20
$45 . \sqcup 0$
Area of Uurve
Sq. Inches
32.92
47.51
38.30

Area of 100
Squares Liean 35.08, variation abovt 1/5,0
Area oi vurve
for Back of
Cylinder Only
27.93
38.54
-1.2

Hean Decrease
in Fressure on back

と. 00
5.50

1e. 41

Li\&月. of Cylinder	1	1	1
Ratio Liax. rres-			
sure on rimont to			
Average Decrease			
on back	1.10	1.19	1.20
Force sepresented			
Area of Curve	-		
in Squares	93.9	135.6	109.2
worce per unit			
Iength in Lbs.	. 000527	. 0153	. 0370
Total sorce on Cylinder	. 0948	. 275	. 605
Coefficient Ualculated			
Irom Static			
slate Velocity	. 568	. 510	. 520
jrom I'sximum			
Pressuio Vel-			
coity	. 536	. 516	. 506
Coefficient from			
Force lieasurements	. 62	. 62	. 62

TABLL XIII, Continued

Diam. of
cylinder
Static Plate
Reading
Speed Derivea
Irom Static
Plate Reaing in.P.
63.0
46.6
30.1

Temperature 19.0°
26.9°
26.8°
Max. Positive
Pressure on rront

Speed Derived
from ...ax. Posi-
$\begin{array}{lll}\text { tive Pressure I...P.A. 64.40 } 46.95 ~ & 80.20\end{array}$
Area of Curve
Sq. Inches
50.22
47.90
41.20
irea of 100
Scuares
Area oz uncue
fior Bacs or
Ojlinder Only
42.60
34.47
30.30

Hean Decrease
in Pressure on Bacr
30.35
9.84
4.31

Ratio lax. Pressure on rroit to Average necrease
on Back
rorce apresented
by one square (ius)
.000565
.0005410
.0000326

Area of Curve

in Souares
145. 4
136.6
127.5

TABI: XIII, Uu:ひimu,a

Dicun. Of
CyIinder 1 3
Force per UnitLength in Lbs..08100401.0934
"otal Zorce on Cylinaer 1.456 1.718 1.674
Coefficient こal- culated
Frors StaticPlate Volocity589415415
Froll laximumPressure Vel-ocity.564.413400
Coefficient fromforce ...easurements62.4343

```
Dicus. vi
Cylimaer 4 l/Z 6
Stctic Plate
Reaàing
4.83
4.07
speed Derived
from Static
Pl&te Keadin天 H.N. S0.97 2Ј.41
Iemperature 20.50}21.3
I.&x. Yositive
Pressure on
irront 7.33 7.30
Speed Derived
frol.. Lax. Yosi-
#ive Pressure II.P.I. 30.84
30.78
Area oí Curve
iq. Inches
44.67
40.36
Area of }10
squares Liean S"s.o४, veriation about l/b,p
Lrca of Curve
for bacr of
Uylinder Only 35.05 33.05
INean Decrease
in Pressure on
back
\atio IIax. Y"es-
sure on Front to
Average Decrease
on secr
Fotce Ropresentod
by one Square (liss)
.000515
                                    .000688
Area of Curve
in Squares
127.4
115.1
```

rabat KIII, COMEinued
Dic... Of
Cylinder $41 / \dot{Z}$6
Force per Unit Length in Ius. .0656 0792
'lotal porce on CJlindar 1.179
1.422
Coefficient Cal-culated
From static FlateVe ocity.430 431
from liaximun eres-sure Velocity.453695
Coefiticient from romee nieasurements 43 43

FOLD OUT

-

FOLD OUT

FOLD OUT

FOLD OUT

FOLD OUT

FOLD OUT

FOLD OUT

FOLD OUT

FOLD OUT

FOLD OUT

-

FOLD OUT

FOLD OUT

t

[^0]: 1.1 tnis und the following tables, u is tanen as t.ie diuncter of tine cylinder. U denotes tre absolute cjefificicint.

